第450节(3 / 4)

投票推荐 加入书签 留言反馈

  简单来理解,可以把储能线圈体系的两端封闭,到地面上去进行充电。
  当整个体系运行以后,进入放电模式,就可以再把两端连通,和反重力装置共用一个冷却体系。
  这样就可以把反重力装置和smes电池结合在一起。
  等王浩全部讲解完以后,会议室陷入了短暂的沉默。
  每一个看着白板上设计内容的人都感到非常的震撼,他们完全没有想过这种联合设计问题。
  现在把超导电池嵌入到反重力装置,绝对是非常精湛的的设计,完全把两个体系结合在了一起。
  他们已经没有了对于联合研发的疑惑,反倒对于联合研发工作非常的期待。
  ……
  两个研究组每个人都是干劲十足。
  他们能够看得出来,王浩是真希望能够研究出反重力飞行器,而且也表现出了十足的信心。
  既然王浩院士都这么有信心,他们还需要过多考虑什么呢?
  现在最大的难点,一个就是整体的设计,另外就是电子系统。
  不管是超导电池的失超监控、功率调节,还是飞行器的平衡以及自动化控制系统,都可以归在‘电子系统’上。
  软技术成为了关键。
  在飞行器整体设计方面,他们还要论证驱动力问题,还有一些其他的技术,包括电力推进器的问题、单旋转风扇设计,圆形环绕起降架,等等。
  通过一系列的论证会议,王浩很快就确定了主设计方案,飞行器会采用八个电力推进器的设计,其中有四个电力推进器可以做到多方向的扭动,一方面是辅助平衡体系,另一方面也作为横向推进的驱动。
  其他的四个电力推进器,只负责升空、降落以及平衡体系。
  在确定了主设计方案以后,几个技术组就开始协调合作,进行细节技术的研究工作。
  研究组每天必须要做的工作,就是召开论证会议——
  刘明坤:“储能线圈的独立充电系统,可以在上方开一个特殊的管道,来独立充电维持的冷却体系。”
  段清柏:“主仓下面的四个电力推进器可以增加旋转的方向,只是后台控制会更复杂一些。”
  梁静叶:“在飞行过程中,我们可以适当降低冷却温度,以保证电力输出过程的安全性。的”
  郝军:“我们依旧可以添加单风扇设计,当飞行到一定高度后,就可以关闭平衡电力推进器,这样会让飞行器更加灵活。”
  “……”
  不断的研究,不断的论证。
  反重力飞行器的设计可以说每天都有进展,一个设计方案的敲定,飞行器各个部分的设计不断的完善着。
  很快。
  一个月时间过去了。
  这一天的会议确定了主仓设计,决定在反重力装置的中心位置上方,独立建立一个凸起的主仓。
  这就能够保证主仓控制的飞行员,不会受到横向反重力的影响而引发健康问题。 ↑返回顶部↑


章节目录